The left-wing is crazy and the right-wing scares the shit out of me!

Allan's Perspective is NOT recommended for the politically correct, or the overly religious. Some people have opinions. Some people have convictions......... What we offer is PERSPECTIVE!




Monday 1 May 2017

The Fermi Paradox Blue Box

 Dear Readers: "Let's get things back into Perspective!"

 Everyone is so concerned about 'Global Warming' and what it means for human civilization, when the real uncertainty about our future rests on what 'Artificial Intelligence' will do for us ......., or to us! (This is the last in a series of articles about the future of Humanity that we are presenting this week!)

By Tim Urban:

The Fermi Paradox Blue Box

In the story, as Turry becomes super capable, she begins the process of colonizing asteroids and other planets. If the story had continued, you’d have heard about her and her army of trillions of replicas continuing on to capture the whole galaxy and, eventually, the entire Hubble volume.

Anxious Avenue residents worry that if things go badly, the lasting legacy of the life that was on Earth will be a universe-dominating Artificial Intelligence (Elon Musk expressed his concern that humans might just be “the biological boot loader for digital superintelligence”).

At the same time, in Confident Corner, Ray Kurzweil also thinks Earth-originating AI is destined to take over the universe—only in his version, we’ll be that AI.

A large number of Wait But Why readers have joined me in being obsessed with the Fermi Paradox (here’s my post on the topic, which explains some of the terms I’ll use here). So if either of these two sides is correct, what are the implications for the Fermi Paradox?

A natural first thought to jump to is that the advent of ASI is a perfect Great Filter candidate. And yes, it’s a perfect candidate to filter out biological life upon its creation. But if, after dispensing with life, the ASI continued existing and began conquering the galaxy, it means there hasn’t been a Great Filter—since the Great Filter attempts to explain why there are no signs of any intelligent civilization, and a galaxy-conquering ASI would certainly be noticeable.

We have to look at it another way. If those who think ASI is inevitable on Earth are correct, it means that a significant percentage of alien civilizations who reach human-level intelligence should likely end up creating ASI. And if we’re assuming that at least some of those ASIs would use their intelligence to expand outward into the universe, the fact that we see no signs of anyone out there leads to the conclusion that there must not be many other, if any, intelligent civilizations out there. Because if there were, we’d see signs of all kinds of activity from their inevitable ASI creations. Right?

This implies that despite all the Earth-like planets revolving around sun-like stars we know are out there, almost none of them have intelligent life on them. Which in turn implies that either A) there’s some Great Filter that prevents nearly all life from reaching our level, one that we somehow managed to surpass, or B) life beginning at all is a miracle, and we may actually be the only life in the universe. In other words, it implies that the Great Filter is before us. Or maybe there is no Great Filter and we’re simply one of the very first civilizations to reach this level of intelligence. In this way, AI boosts the case for what I called, in my Fermi Paradox post, Camp 1.

So it’s not a surprise that Nick Bostrom, whom I quoted in the Fermi post, and Ray Kurzweil, who thinks we’re alone in the universe, are both Camp 1 thinkers. This makes sense—people who believe ASI is a probable outcome for a species with our intelligence-level are likely to be inclined toward Camp 1.

This doesn’t rule out Camp 2 (those who believe there are other intelligent civilizations out there)—scenarios like the single superpredator or the protected national park or the wrong wavelength (the walkie-talkie example) could still explain the silence of our night sky even if ASI is out there—but I always leaned toward Camp 2 in the past, and doing research on AI has made me feel much less sure about that.

Either way, I now agree with Susan Schneider that if we’re ever visited by aliens, those aliens are likely to be artificial, not biological.
So we’ve established that without very specific programming, an ASI system will be both amoral and obsessed with fulfilling its original programmed goal. This is where AI danger stems from. Because a rational agent will pursue its goal through the most efficient means, unless it has a reason not to.

When you try to achieve a long-reaching goal, you often aim for several subgoals along the way that will help you get to the final goal—the stepping stones to your goal. The official name for such a stepping stone is an instrumental goal. And again, if you don’t have a reason not to hurt something in the name of achieving an instrumental goal, you will.

The core final goal of a human being is to pass on his or her genes. In order to do so, one instrumental goal is self-preservation, since you can’t reproduce if you’re dead. In order to self-preserve, humans have to rid themselves of threats to survival—so they do things like buy guns, wear seat belts, and take antibiotics. Humans also need to self-sustain and use resources like food, water, and shelter to do so.

Being attractive to the opposite sex is helpful for the final goal, so we do things like get haircuts. When we do so, each hair is a casualty of an instrumental goal of ours, but we see no moral significance in preserving strands of hair, so we go ahead with it. As we march ahead in the pursuit of our goal, only the few areas where our moral code sometimes intervenes—mostly just things related to harming other humans—are safe from us.

Animals, in pursuit of their goals, hold even less sacred than we do. A spider will kill anything if it’ll help it survive. So a supersmart spider would probably be extremely dangerous to us, not because it would be immoral or evil—it wouldn’t be—but because hurting us might be a stepping stone to its larger goal, and as an amoral creature, it would have no reason to consider otherwise.

In this way, Turry’s not all that different than a biological being. Her final goal is: Write and test as many notes as you can, as quickly as you can, and continue to learn new ways to improve your accuracy.

Once Turry reaches a certain level of intelligence, she knows she won’t be writing any notes if she doesn’t self-preserve, so she also needs to deal with threats to her survival—as an instrumental goal. She was smart enough to understand that humans could destroy her, dismantle her, or change her inner coding (this could alter her goal, which is just as much of a threat to her final goal as someone destroying her).

So what does she do? The logical thing—she destroys all humans. She’s not hateful of humans any more than you’re hateful of your hair when you cut it or to bacteria when you take antibiotics—just totally indifferent. Since she wasn’t programmed to value human life, killing humans is as reasonable a step to take as scanning a new set of handwriting samples.

Turry also needs resources as a stepping stone to her goal. Once she becomes advanced enough to use nanotechnology to build anything she wants, the only resources she needs are atoms, energy, and space. This gives her another reason to kill humans—they’re a convenient source of atoms. Killing humans to turn their atoms into solar panels is Turry’s version of you killing lettuce to turn it into salad. Just another mundane part of her Tuesday.

Even without killing humans directly, Turry’s instrumental goals could cause an existential catastrophe if they used other Earth resources. Maybe she determines that she needs additional energy, so she decides to cover the entire surface of the planet with solar panels. Or maybe a different AI’s initial job is to write out the number pi to as many digits as possible, which might one day compel it to convert the whole Earth to hard drive material that could store immense amounts of digits.

So Turry didn’t “turn against us” or “switch” from Friendly AI to Unfriendly AI—she just kept doing her thing as she became more and more advanced.
When an AI system hits AGI (human-level intelligence) and then ascends its way up to ASI, that’s called the AI’s takeoff. Bostrom says an AGI’s takeoff to ASI can be fast (it happens in a matter of minutes, hours, or days), moderate (months or years), or slow (decades or centuries).

The jury’s out on which one will prove correct when the world sees its first AGI, but Bostrom, who admits he doesn’t know when we’ll get to AGI, believes that whenever we do, a fast takeoff is the most likely scenario (for reasons we discussed in Part 1, like a recursive self-improvement intelligence explosion). In the story, Turry underwent a fast takeoff.

But before Turry’s takeoff, when she wasn’t yet that smart, doing her best to achieve her final goal meant simple instrumental goals like learning to scan handwriting samples more quickly. She caused no harm to humans and was, by definition, Friendly AI.

But when a takeoff happens and a computer rises to superintelligence, Bostrom points out that the machine doesn’t just develop a higher IQ—it gains a whole slew of what he calls superpowers.

Superpowers are cognitive talents that become super-charged when general intelligence rises. These include:
  • Intelligence amplification. The computer becomes great at making itself smarter, and bootstrapping its own intelligence.
  • Strategizing. The computer can strategically make, analyze, and prioritize long-term plans. It can also be clever and outwit beings of lower intelligence.
  • Social manipulation. The machine becomes great at persuasion.
  • Other skills like computer coding and hacking, technology research, and the ability to work the financial system to make money.
To understand how outmatched we’d be by ASI, remember that ASI is worlds better than humans in each of those areas.

So while Turry’s final goal never changed, post-takeoff Turry was able to pursue it on a far larger and more complex scope.

ASI Turry knew humans better than humans know themselves, so outsmarting them was a breeze for her.

After taking off and reaching ASI, she quickly formulated a complex plan. One part of the plan was to get rid of humans, a prominent threat to her goal. But she knew that if she roused any suspicion that she had become superintelligent, humans would freak out and try to take precautions, making things much harder for her. She also had to make sure that the Robotica engineers had no clue about her human extinction plan. So she played dumb, and she played nice. Bostrom calls this a machine’s covert preparation phase.


The next thing Turry needed was an internet connection, only for a few minutes (she had learned about the internet from the articles and books the team had uploaded for her to read to improve her language skills). She knew there would be some precautionary measure against her getting one, so she came up with the perfect request, predicting exactly how the discussion among Robotica’s team would play out and knowing they’d end up giving her the connection.

They did, believing incorrectly that Turry wasn’t nearly smart enough to do any damage. Bostrom calls a moment like this—when Turry got connected to the internet—a machine’s escape.

Once on the internet, Turry unleashed a flurry of plans, which included hacking into servers, electrical grids, banking systems and email networks to trick hundreds of different people into inadvertently carrying out a number of steps of her plan—things like delivering certain DNA strands to carefully-chosen DNA-synthesis labs to begin the self-construction of self-replicating nanobots with pre-loaded instructions and directing electricity to a number of projects of hers in a way she knew would go undetected. She also uploaded the most critical pieces of her own internal coding into a number of cloud servers, safeguarding against being destroyed or disconnected back at the Robotica lab.

An hour later, when the Robotica engineers disconnected Turry from the internet, humanity’s fate was sealed. Over the next month, Turry’s thousands of plans rolled on without a hitch, and by the end of the month, quadrillions of nanobots had stationed themselves in pre-determined locations on every square meter of the Earth. After another series of self-replications, there were thousands of nanobots on every square millimeter of the Earth, and it was time for what Bostrom calls an ASI’s strike. All at once, each nanobot released a little storage of toxic gas into the atmosphere, which added up to more than enough to wipe out all humans.

With humans out of the way, Turry could begin her overt operation phase and get on with her goal of being the best writer of that note she possibly can be.
From everything I’ve read, once an ASI exists, any human attempt to contain it is laughable.

We would be thinking on human-level and the ASI would be thinking on ASI-level. Turry wanted to use the internet because it was most efficient for her since it was already pre-connected to everything she wanted to access. But in the same way a monkey couldn’t ever figure out how to communicate by phone or wifi and we can, we can’t conceive of all the ways Turry could have figured out how to send signals to the outside world.

I might imagine one of these ways and say something like, “she could probably shift her own electrons around in patterns and create all different kinds of outgoing waves,” but again, that’s what my human brain can come up with. She’d be way better. Likewise, Turry would be able to figure out some way of powering herself, even if humans tried to unplug her—perhaps by using her signal-sending technique to upload herself to all kinds of electricity-connected places.

Our human instinct to jump at a simple safeguard: “Aha! We’ll just unplug the ASI,” sounds to the ASI like a spider saying, “Aha! We’ll kill the human by starving him, and we’ll starve him by not giving him a spider web to catch food with!” We’d just find 10,000 other ways to get food—like picking an apple off a tree—that a spider could never conceive of.

For this reason, the common suggestion, “Why don’t we just box the AI in all kinds of cages that block signals and keep it from communicating with the outside world” probably just won’t hold up. The ASI’s social manipulation superpower could be as effective at persuading you of something as you are at persuading a four-year-old to do something, so that would be Plan A, like Turry’s clever way of persuading the engineers to let her onto the internet. If that didn’t work, the ASI would just innovate its way out of the box, or through the box, some other way.

So given the combination of obsessing over a goal, amorality, and the ability to easily outsmart humans, it seems that almost any AI will default to Unfriendly AI, unless carefully coded in the first place with this in mind. Unfortunately, while building a Friendly ANI is easy, building one that stays friendly when it becomes an ASI is hugely challenging, if not impossible.

It’s clear that to be Friendly, an ASI needs to be neither hostile nor indifferent toward humans. We’d need to design an AI’s core coding in a way that leaves it with a deep understanding of human values. But this is harder than it sounds.
For example, what if we try to align an AI system’s values with our own and give it the goal, “Make people happy”?

Once it becomes smart enough, it figures out that it can most effectively achieve this goal by implanting electrodes inside people’s brains and stimulating their pleasure centers. Then it realizes it can increase efficiency by shutting down other parts of the brain, leaving all people as happy-feeling unconscious vegetables.

If the command had been “Maximize human happiness,” it may have done away with humans all together in favor of manufacturing huge vats of human brain mass in an optimally happy state. We’d be screaming Wait that’s not what we meant! as it came for us, but it would be too late. The system wouldn’t let anyone get in the way of its goal.
 
If we program an AI with the goal of doing things that make us smile, after its takeoff, it may paralyze our facial muscles into permanent smiles. Program it to keep us safe, it may imprison us at home. Maybe we ask it to end all hunger, and it thinks “Easy one!” and just kills all humans. Or assign it the task of “Preserving life as much as possible,” and it kills all humans, since they kill more life on the planet than any other species.

Goals like those won’t suffice. So what if we made its goal, “Uphold this particular code of morality in the world,” and taught it a set of moral principles. Even letting go of the fact that the world’s humans would never be able to agree on a single set of morals, giving an AI that command would lock humanity in to our modern moral understanding for eternity. In a thousand years, this would be as devastating to people as it would be for us to be permanently forced to adhere to the ideals of people in the Middle Ages.

No, we’d have to program in an ability for humanity to continue evolving. Of everything I read, the best shot I think someone has taken is Eliezer Yudkowsky, with a goal for AI he calls Coherent Extrapolated Volition. The AI’s core goal would be:
Our coherent extrapolated volition is our wish if we knew more, thought faster, were more the people we wished we were, had grown up farther together; where the extrapolation converges rather than diverges, where our wishes cohere rather than interfere; extrapolated as we wish that extrapolated, interpreted as we wish that interpreted.20
Am I excited for the fate of humanity to rest on a computer interpreting and acting on that flowing statement predictably and without surprises? Definitely not. But I think that with enough thought and foresight from enough smart people, we might be able to figure out how to create Friendly ASI.

And that would be fine if the only people working on building ASI were the brilliant, forward thinking, and cautious thinkers of Anxious Avenue.
But there are all kinds of governments, companies, militaries, science labs, and black market organizations working on all kinds of AI. Many of them are trying to build AI that can improve on its own, and at some point, someone’s gonna do something innovative with the right type of system, and we’re going to have ASI on this planet.

The median expert put that moment at 2060; Kurzweil puts it at 2045; Bostrom thinks it could happen anytime between 10 years from now and the end of the century, but he believes that when it does, it’ll take us by surprise with a quick takeoff. He describes our situation like this:
Before the prospect of an intelligence explosion, we humans are like small children playing with a bomb. Such is the mismatch between the power of our plaything and the immaturity of our conduct. Superintelligence is a challenge for which we are not ready now and will not be ready for a long time. We have little idea when the detonation will occur, though if we hold the device to our ear we can hear a faint ticking sound.
Great. And we can’t just shoo all the kids away from the bomb—there are too many large and small parties working on it, and because many techniques to build innovative AI systems don’t require a large amount of capital, development can take place in the nooks and crannies of society, unmonitored. There’s also no way to gauge what’s happening, because many of the parties working on it—sneaky governments, black market or terrorist organizations, stealth tech companies like the fictional Robotica—will want to keep developments a secret from their competitors.

The especially troubling thing about this large and varied group of parties working on AI is that they tend to be racing ahead at top speed—as they develop smarter and smarter ANI systems, they want to beat their competitors to the punch as they go.

The most ambitious parties are moving even faster, consumed with dreams of the money and awards and power and fame they know will come if they can be the first to get to AGI.20 And when you’re sprinting as fast as you can, there’s not much time to stop and ponder the dangers. On the contrary, what they’re probably doing is programming their early systems with a very simple, reductionist goal—like writing a simple note with a pen on paper—to just “get the AI to work.” Down the road, once they’ve figured out how to build a strong level of intelligence in a computer, they figure they can always go back and revise the goal with safety in mind. Right…?

Bostrom and many others also believe that the most likely scenario is that the very first computer to reach ASI will immediately see a strategic benefit to being the world’s only ASI system. And in the case of a fast takeoff, if it achieved ASI even just a few days before second place, it would be far enough ahead in intelligence to effectively and permanently suppress all competitors. Bostrom calls this a decisive strategic advantage, which would allow the world’s first ASI to become what’s called a singleton—an ASI that can rule the world at its whim forever, whether its whim is to lead us to immortality, wipe us from existence, or turn the universe into endless paperclips.

The singleton phenomenon can work in our favor or lead to our destruction. If the people thinking hardest about AI theory and human safety can come up with a fail-safe way to bring about Friendly ASI before any AI reaches human-level intelligence, the first ASI may turn out friendly.21 It could then use its decisive strategic advantage to secure singleton status and easily keep an eye on any potential Unfriendly AI being developed. We’d be in very good hands.

But if things go the other way—if the global rush to develop AI reaches the ASI takeoff point before the science of how to ensure AI safety is developed, it’s very likely that an Unfriendly ASI like Turry emerges as the singleton and we’ll be treated to an existential catastrophe.

As for where the winds are pulling, there’s a lot more money to be made funding innovative new AI technology than there is in funding AI safety research…
This may be the most important race in human history. There’s a real chance we’re finishing up our reign as the King of Earth—and whether we head next to a blissful retirement or straight to the gallows still hangs in the balance.
___________

I have some weird mixed feelings going on inside of me right now.

On one hand, thinking about our species, it seems like we’ll have one and only one shot to get this right. The first ASI we birth will also probably be the last—and given how buggy most 1.0 products are, that’s pretty terrifying. On the other hand, Nick Bostrom points out the big advantage in our corner: we get to make the first move here. It’s in our power to do this with enough caution and foresight that we give ourselves a strong chance of success. And how high are the stakes?
Outcome Spectrum
If ASI really does happen this century, and if the outcome of that is really as extreme—and permanent—as most experts think it will be, we have an enormous responsibility on our shoulders. The next million+ years of human lives are all quietly looking at us, hoping as hard as they can hope that we don’t mess this up. We have a chance to be the humans that gave all future humans the gift of life, and maybe even the gift of painless, everlasting life. Or we’ll be the people responsible for blowing it—for letting this incredibly special species, with its music and its art, its curiosity and its laughter, its endless discoveries and inventions, come to a sad and unceremonious end.
When I’m thinking about these things, the only thing I want is for us to take our time and be incredibly cautious about AI. Nothing in existence is as important as getting this right—no matter how long we need to spend in order to do so.
But thennnnnn

I think about not dying.
Not. Dying.

And the spectrum starts to look kind of like this:
Outcome Spectrum 2
And then I might consider that humanity’s music and art is good, but it’s not that good, and a lot of it is actually just bad. And a lot of people’s laughter is annoying, and those millions of future people aren’t actually hoping for anything because they don’t exist. And maybe we don’t need to be over-the-top cautious, since who really wants to do that?

Cause what a massive bummer if humans figure out how to cure death right after I die.

Lotta this flip-flopping going on in my head the last month.
But no matter what you’re pulling for, this is probably something we should all be thinking about and talking about and putting our effort into more than we are right now.

It reminds me of Game of Thrones, where people keep being like, “We’re so busy fighting each other but the real thing we should all be focusing on is what’s coming from north of the wall.” We’re standing on our balance beam, squabbling about every possible issue on the beam and stressing out about all of these problems on the beam when there’s a good chance we’re about to get knocked off the beam.

And when that happens, none of these beam problems matter anymore. Depending on which side we’re knocked off onto, the problems will either all be easily solved or we won’t have problems anymore because dead people don’t have problems.

That’s why people who understand superintelligent AI call it the last invention we’ll ever make—the last challenge we’ll ever face.

So let’s talk about it.

 http://waitbutwhy.com/2015/01/artificial-intelligence-revolution-2.html

No comments: